The equation $\operatorname{denom}\left(B_{n}\right)=n$ has only one solution

Bernd C. Kellner

2nd April 2005

Abstract

Let $B_{n}(n=0,1,2, \ldots)$ denote the usual n-th Bernoulli number. We show that the denominator of B_{n} equals n if and only if $n=1806$.

Keywords: Bernoulli number, denominator
Mathematics Subject Classification 2000: 11B68

1 Introduction

The Bernoulli numbers B_{n} can be defined by

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}, \quad|z|<2 \pi
$$

The numbers B_{n} are rational where the B_{n} with odd index $n>1$ are zero and the $(-1)^{\frac{n}{2}+1} B_{n}$ are positive when n is even. For now, let n be an even positive integer and p denotes a prime. The denominator of B_{n}, see [1], is given by

$$
\begin{equation*}
\operatorname{denom}\left(B_{n}\right)=\prod_{p-1 \mid n} p \tag{1.1}
\end{equation*}
$$

2 Properties of the denominator of B_{n}

Theorem 2.1 Let n be an even positive integer. Then

$$
\operatorname{denom}\left(B_{n}\right)=n \quad \Longleftrightarrow \quad n=1806
$$

Note that $B_{0}=1, B_{1}=-\frac{1}{2}$, and $B_{n}=0$ for all odd $n>1$. Therefore we only have to examine even indices n of B_{n}. Since n is an even positive integer, it easily follows that $6 \mid \operatorname{denom}\left(B_{n}\right)$. Equation (1.1) shows that denom $\left(B_{n}\right)$ is a squarefree integer.

Lemma 2.2 Let n be an even positive integer. Assume that $\operatorname{denom}\left(B_{n}\right)=n$. Then we have the following conditions:
(1) $n=p_{1} \cdots p_{r}$ with primes $p_{1}<p_{2}<\ldots<p_{r}$ where $r \geq 2$,
(2) $p_{\nu}-1 \mid p_{1} \cdots p_{\nu-1}$ for $\nu=2, \ldots, r$,
(3) $n+1$ is not a prime.

Proof. By assumption we have denom $\left(B_{n}\right)=n$. (1): This is a consequence of (1.1) and that $6 \mid \operatorname{denom}\left(B_{n}\right)$. (2): We have $p_{\nu}-1 \mid n$ for $\nu=1, \ldots, r$. Since $p_{1}=2$ and $p_{1}<p_{2}<\ldots<p_{r}$, we deduce that $p_{\nu}-1 \mid p_{1} \cdots p_{\nu-1}$ for $\nu=2, \ldots, r$. (3): Assume that $p=n+1$ is a prime. Then $p-1 \mid n$ implies that $p \mid n$. Contradiction.

Proof of Theorem 2.1. Assume that $\operatorname{denom}\left(B_{n}\right)=n$. By Lemma 2.2 we have $n=p_{1} \cdots p_{r}$ with $r \geq 2$. Since $p_{1}=2, p_{2}=3$, and $p_{1} p_{2}+1=7$ is a prime, we deduce that $r \geq 3$. Now we shall construct, step by step, the prime factors of n by using Lemma 2.2.

Case $r=3: n=2 \cdot 3 \cdot p_{3}$. The condition $p_{3}-1 \mid 6$ only yields $p_{3}=7$, but $n=42$ is no solution since 43 is a prime.
Case $r=4: n=2 \cdot 3 \cdot 7 \cdot p_{4}$. The condition $p_{4}-1 \mid 42$ only yields $p_{4}=43$. This gives a solution with $n=1806$, since $1807=13 \cdot 139$ is composite.
Case $r=5: n=2 \cdot 3 \cdot 7 \cdot 43 \cdot p_{5}$. We have to examine the condition $p_{5}-1 \mid 2 \cdot 3 \cdot 7 \cdot 43$. This provides the possible solutions for $p_{5}: 2 \cdot 43+1=87,2 \cdot 3 \cdot 43+1=259,2 \cdot 7 \cdot 43+1=603$, $2 \cdot 3 \cdot 7 \cdot 43+1=1807$. None of these numbers are prime. Hence, there is no solution for p_{5} and n.

Since there is no solution in the case $r=5$, it follows that there is no solution for any $r \geq 5$. This shows that $n=1806$ is the unique solution of $\operatorname{denom}\left(B_{n}\right)=n$.

References

[1] K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory, volume 84 of Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1990.

