The equation denom $(B_n) = n$ has only one solution

Bernd C. Kellner

2nd April 2005

Abstract

Let B_n (n = 0, 1, 2, ...) denote the usual *n*-th Bernoulli number. We show that the denominator of B_n equals *n* if and only if n = 1806.

Keywords: Bernoulli number, denominator

Mathematics Subject Classification 2000: 11B68

1 Introduction

The Bernoulli numbers B_n can be defined by

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} B_n \frac{z^n}{n!} \,, \quad |z| < 2\pi \,.$$

The numbers B_n are rational where the B_n with odd index n > 1 are zero and the $(-1)^{\frac{n}{2}+1}B_n$ are positive when n is even. For now, let n be an even positive integer and p denotes a prime. The denominator of B_n , see [1], is given by

$$\operatorname{denom}(B_n) = \prod_{p-1|n} p.$$
(1.1)

2 Properties of the denominator of B_n

Theorem 2.1 Let n be an even positive integer. Then

$$\operatorname{denom}(B_n) = n \quad \iff \quad n = 1806$$

Note that $B_0 = 1$, $B_1 = -\frac{1}{2}$, and $B_n = 0$ for all odd n > 1. Therefore we only have to examine even indices n of B_n . Since n is an even positive integer, it easily follows that $6 \mid \text{denom}(B_n)$. Equation (1.1) shows that $\text{denom}(B_n)$ is a squarefree integer.

Lemma 2.2 Let n be an even positive integer. Assume that denom $(B_n) = n$. Then we have the following conditions:

- (1) $n = p_1 \cdots p_r$ with primes $p_1 < p_2 < \ldots < p_r$ where $r \ge 2$,
- (2) $p_{\nu} 1 \mid p_1 \cdots p_{\nu-1} \text{ for } \nu = 2, \dots, r,$
- (3) n+1 is not a prime.

PROOF. By assumption we have denom $(B_n) = n$. (1): This is a consequence of (1.1) and that 6 | denom (B_n) . (2): We have $p_{\nu} - 1 \mid n$ for $\nu = 1, \ldots, r$. Since $p_1 = 2$ and $p_1 < p_2 < \ldots < p_r$, we deduce that $p_{\nu} - 1 \mid p_1 \cdots p_{\nu-1}$ for $\nu = 2, \ldots, r$. (3): Assume that p = n + 1 is a prime. Then $p - 1 \mid n$ implies that $p \mid n$. Contradiction.

PROOF OF THEOREM 2.1. Assume that denom $(B_n) = n$. By Lemma 2.2 we have $n = p_1 \cdots p_r$ with $r \ge 2$. Since $p_1 = 2$, $p_2 = 3$, and $p_1 p_2 + 1 = 7$ is a prime, we deduce that $r \ge 3$. Now we shall construct, step by step, the prime factors of n by using Lemma 2.2.

Case r = 3: $n = 2 \cdot 3 \cdot p_3$. The condition $p_3 - 1 \mid 6$ only yields $p_3 = 7$, but n = 42 is no solution since 43 is a prime.

Case r = 4: $n = 2 \cdot 3 \cdot 7 \cdot p_4$. The condition $p_4 - 1 \mid 42$ only yields $p_4 = 43$. This gives a solution with n = 1806, since $1807 = 13 \cdot 139$ is composite.

Case r = 5: $n = 2 \cdot 3 \cdot 7 \cdot 43 \cdot p_5$. We have to examine the condition $p_5 - 1 \mid 2 \cdot 3 \cdot 7 \cdot 43$. This provides the possible solutions for p_5 : $2 \cdot 43 + 1 = 87$, $2 \cdot 3 \cdot 43 + 1 = 259$, $2 \cdot 7 \cdot 43 + 1 = 603$, $2 \cdot 3 \cdot 7 \cdot 43 + 1 = 1807$. None of these numbers are prime. Hence, there is no solution for p_5 and n.

Since there is no solution in the case r = 5, it follows that there is no solution for any $r \ge 5$. This shows that n = 1806 is the unique solution of denom $(B_n) = n$. \Box

References

[1] K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory, volume 84 of Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1990.