On the *p*-divisibility of the sequence B_{lp^r}/lp^r .

Bernd C. Kellner

Let B_n (n = 0, 1, 2, ...) be the usual *n*th Bernoulli number. For an irregular pair (p, l) we define

$$\Delta_{(p,l)} \equiv p^{-1} \left(\frac{B_{l+p-1}}{l+p-1} - \frac{B_l}{l} \right) \pmod{p}$$

with $0 \leq \Delta_{(p,l)} < p$. We call $\Delta_{(p,l)}$ singular when $\Delta_{(p,l)} = 0$. Note that no singular $\Delta_{(p,l)}$ has been found yet and that $p^2 \nmid B_l$ for $p < 12\,000\,000$; see [1] for these calculations.

The following theorems are simplified reformulations of [2, Theorem 8.1, p. 434] and [2, Corollary 8.2, p. 435]. See [2, Section 8, pp. 434] for further details.

Theorem 1 Let $p \ge 5$ be a prime and l, r be positive integers where l is even and 0 < l < p. There are the following cases.

- 1. If p is regular or (p,l) is not an irregular pair, then $\operatorname{ord}_p(B_{lp^r}/lp^r) = 0$.
- 2. If (p,l) is an irregular pair and $p^2 \nmid B_{lp}/lp$, then $\operatorname{ord}_p(B_{lp^r}/lp^r) = 1$.
- 3. If (p,l) is an irregular pair and $p^2 \mid B_{lp}/lp$, then $\operatorname{ord}_p(B_{lp^r}/lp^r) \geq 2$.

Note that no examples of case 3 of Theorem 1 are known. For a nonsingular $\Delta_{(p,l)}$, the following theorem gives a more precise result; see also [2, Section 4, pp. 415].

Theorem 2 Let (p, l) be an irregular pair where $\Delta_{(p,l)} \neq 0$. The p-adic zeta function $\zeta_{p,l}$ associated with (p, l) has a unique simple zero $\chi_{(p,l)} \in \mathbb{Z}_p$. Then

$$\operatorname{ord}_{p}\left(B_{lp^{r}}/lp^{r}\right) = 1 + \operatorname{ord}_{p}\left(\chi_{(p,l)} - l\frac{p^{r}-1}{p-1}\right)$$

Assume that only the first $m \ (m \ge 0)$ p-adic digits of $\chi_{(p,l)}$ are equal to $l, \ a_m \ne l$:

$$\chi_{(p,l)} = l + lp + lp^2 + \dots + lp^{m-1} + a_m p^m + \dots$$

Then

$$\operatorname{ord}_p(B_{lp^r}/lp^r) = 1 + \min(r, m)$$

The case that $\chi_{(p,l)} = l + \cdots$ is equivalent to $p^2 | B_{lp}/lp$ where no example is known. Moreover, it seems that the *p*-adic digits of $\chi_{(p,l)}$ are randomly distributed with no regularity.

References

- J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, M. A. Shokrollahi. Irregular primes and cyclotomic invariants to 12 million. J. Symb. Comput. 31 (2001), no. 1–2, 89–96.
- [2] B. C. Kellner. On irregular prime power divisors of the Bernoulli numbers. Math. Comp. 76 (2007), no. 257, 405–441.